電験3種過去問解説 平成25年機械問13

フィードバック制御のブロック線図についての問題は、どこかを「1」と置き、そこから各部の値を求めていくことで入力と出力の関係を求めれば解くことができます。

ただし、この問題のように入力が複数(フィードバック系から見ると、V1とDの2つが入力、V2が出力)ある場合、それらが互いに独立しているのであれば、

  • D=0としてV1に対する出力V2
  • V1=0としてDに対する出力V2

の重ね合わせが答えとなります。

そんな事をしなくても、V1とDを一つの式に入れてしまっても求まるような気がしてしまいますが、そうやって立てた式は、V1がある値のときにDの値が決定されてしまう、またはDがある値のときにV1の値が決定されてしまうというように互いに相関が発生してしまうので、誤った答えとなります。

 

では、まずD=0としてV1に対するV2の値を求めます。

フィードバック系のどこを「1」と置いてもいいのですが、ここではG1の出力を1とします。するとV2=1で、G1の入力は1/G1です。G2の出力はG2ですから、V1は、「G2を引いたら1/G1になる値」なので、G1の値はG2+1/G1です。この式をV2=の形にすると、V2=G1V1/(1+G1G2)となります。

同様にして、V1=0としてDとV2の関係を求めます。V2=1とすると、G2の出力はG2、そしてG1の入力は-G2です。したがってG1の出力は-G1G2ですから、Dの値は「-G1G2+D=1」となれば辻褄が合うので、D=1-G1G2です。

以上よりDとV2の関係を求めると、V2=D/(1+G1G2)となるので、2つの式を重ね合わせた(5)が答えとなります。

「電験3種過去問解説 平成25年機械問13」への1件のフィードバック

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です